7The reason for this opposition is rooted in the roles of primary and secondary coils as power load and source, respectively. The voltage across each coil is a function of Faraday’s Law of Electromagnetic Induction: V = N dϕ dt . However, since the primary coil acts as a load (drawing power from the 120 VAC source) and the secondary coil acts as a source (sending power to the probes), the directions of current through the two coils will be opposite despite their common voltage polarities. The secondary coil’s opposite current direction causes an opposing magnetic force in that section of the core, reducing the magnetic flux there. In a normal power transformer, this reduction in magnetic flux caused by secondary current is also felt by the primary coil (since there is only one magnetic “path” in a power transformer’s core), which then causes the primary coil to draw more current and re-establish the core flux at its original magnitude. With the inductive relay, however, the opposing magnetic force created by the secondary coil simply forces more of the primary coil’s magnetic flux to bypass to the alternate route: through the armature.