Tag: Actuators
-
27.14 Common Control valve problems
Control valves are subject to a number of common problems. This section is dedicated to an exploration of the more common control valve problems, and potential remedies. 27.14.1 Mechanical friction Control valves are mechanical devices with moving parts, and as such they are subject to friction, primarily between the valve stem and the stem packing. Some degree…
-
27.13 Control valve characterization
Control valves are supposed to deliver reliable, repeatable control of process fluid flow rate over a wide range of operating conditions. As we will soon see, this is something of a challenge, as the rate of fluid flow through a control valve depends on more than just the position of its stem. This section discusses…
-
27.12 Control valve sizing
When control valves operate between fully open and fully shut, they serve much the same purpose in process systems as resistors do in electric circuits: to dissipate energy. Like resistors, the form that this dissipated energy takes is mostly heat, although some of the dissipated energy manifests in the form of vibration and noise27 . In…
-
27.11 Split-range control
There are many process control applications in industry where it is desirable to have multiple control valves respond to the output of a common controller. Control valves configured to follow the command of the same controller are said to be split-ranged, or sequenced. Split-ranged control valves may take different forms of sequencing. A few different modes of…
-
27.10 Valve positioners
The reason why a pneumatic control valve’s stem position corresponds linearly to the amount of air pressure applied to the actuator is because mechanical springs tend to follow Hooke’s Law, where the amount of spring motion (x) is directly proportional to applied force (F = kx). A pneumatic actuator applies force as a function of air pressure and…
-
27.9 Pneumatic actuator response
A limitation inherent to pneumatic valve actuators is the amount of air flow required to or from the actuator to cause rapid valve motion. This is an especially acute problem in all-pneumatic control systems, where the distance separating a control valve from the controller may be substantial: The combined effect of air-flow friction in the…
-
27.8 Actuator bench-set
Valve actuators provide force to move control valve trim. For precise positioning of a control valve, there must be a calibrated relationship between applied force and valve position. Most pneumatic actuators exploit Hooke’s Law to translate applied air pressure to valve stem position. Where, F = Force applied to spring in newtons (metric) or pounds (British) k = Constant…
-
27.7 Valve failure mode
An important design parameter of a control valve is the position it will “fail” to if it loses motive power. For electrically actuated valves, this is typically the last position the valve was in before loss of electric power. For pneumatic and hydraulic actuated valves, the option exists of having a large spring provide a…