Tag: Instrument Calibration
-
18.10 Calibration Standards to Produce and Measure Physical Quantities
As previously defined, calibration refers to the checking and adjustment of an instrument so that its output faithfully corresponds to its input throughout a specified range. In order to calibrate an instrument, we must have some means of knowing the input and/or output quantities associated with the instrument under test. A substance or device used as a…
-
18.8 Instrument turndown
An important performance parameter for transmitter instruments is something often referred to as turndown or rangedown. “Turndown” is defined as the ratio of maximum allowable span to the minimum allowable span for a particular instrument. Suppose a pressure transmitter has a maximum calibration range of 0 to 300 pounds per square inch (PSI), and a turndown of 20:1.…
-
18.7 Calibration Procedures in Linear, Non-Linear and Discrete Instruments
As described earlier in this chapter, calibration refers to the adjustment of an instrument so its output accurately corresponds to its input throughout a specified range. The only way we can know that an instrument’s output accurately corresponds to its input over a continuous range is to subject that instrument to known input values while measuring the…
-
18.6 An analogy for calibration versus ranging
The concepts of calibration (trimming) and ranging are often difficult for new students of instrumentation to immediately grasp. A simple analogy useful for understanding these topics is that of setting a digital alarm clock. Suppose you purchase a digital alarm clock to wake you up at 7:00 AM in the morning so that you can get to school on…
-
18.5 LRV and URV settings, digital trim (digital transmitters)
The advent of “smart” field instruments containing microprocessors has been a great advance for industrial instrumentation. These devices have built-in diagnostic ability, greater accuracy (due to digital compensation of sensor nonlinearities), and the ability to communicate digitally3 with host devices for reporting of various parameters. A simplified block diagram of a “smart” pressure transmitter looks something…
-
18.4 Transmitter Damping Adjustments
The vast majority of modern process transmitters (both analog and digital) come equipped with a feature known as damping. This feature is essentially a low-pass filter function placed in-line with the signal, reducing the amount of process “noise” reported by the transmitter. Imagine a pressure transmitter sensing water pressure at the outlet of a large pump.…
-
18.3 Calibration errors and testing
The efficient identification and correction of instrument calibration errors is an important function for instrument technicians. For some technicians – particularly those working in industries where calibration accuracy is mandated by law – the task of routine calibration consumes most of their working time. For other technicians calibration may be an occasional task, but nevertheless…
-
Chapter 18 Basic Principles of Instrument Calibration and Ranging
Every instrument has at least one input and one output. For a pressure sensor, the input would be some fluid pressure and the output would (most likely) be an electronic signal. For a loop indicator, the input would be a 4-20 mA current signal and the output would be a human-readable display. For a variable-speed motor drive, the…