Tag: OPAMP Circuits
-
14.6 Proper care and feeding of pneumatic instruments
Perhaps the most important rule to obey when using pneumatic instruments is to maintain clean and dry instrument air. Compressed air containing dirt, rust, oil, water, or other contaminants will cause operational problems for pneumatic instruments. First and foremost is the concern that tiny orifices and nozzles inside the pneumatic mechanisms will clog over time. Clogged orifices tend…
-
14.5 Analysis of practical pneumatic instruments
To better understand the design and operation of self-balancing pneumatic mechanisms, it is helpful to examine the workings of some actual instruments. In this section, we will explore three different pneumatic instruments: the Foxboro model 13A differential pressure transmitter, the Foxboro model E69 I/P (electro-pneumatic) transducer, the Fisher model 546 I/P (electro-pneumatic) transducer, and the…
-
14.4 Comparison of Op-Amp Circuits With Analogous Pneumatic Mechanisms
Self-balancing pneumatic instrument mechanisms are very similar to negative-feedback operational amplifier circuits, in that negative feedback is used to generate an output signal in precise proportion to an input signal. This section compares simple operational amplifier (“opamp”) circuits with analogous pneumatic mechanisms for the purpose of illustrating how negative feedback works, and learning how to…
-
14.3 Pilot valves and pneumatic amplifying relays
Self-balancing mechanisms consisting solely of a baffle/nozzle detector coupled to a feedback bellows, while functional, are not always practical as field instruments. Nozzles and orifices must be made rather small in diameter in order to minimize compressed air usage4 , but this means the mechanism will require significant time to alter its output pressure (i.e. to…
-
14.2 Self-balancing pneumatic instrument principles
A great many precision instruments use the principle of balance to measure some quantity. Perhaps the simplest example of a balance-based instrument is the common balance-beam scale used to measure mass in a laboratory: A specimen of unknown mass is placed in one pan of the scale, and precise weights are placed in the other pan until…
-
14.1 Pneumatic sensing elements
Most pneumatic instruments use a simple but highly sensitive mechanism for converting mechanical motion into variable air pressure: the baffle-and-nozzle assembly (sometimes referred to as a flapper-and-nozzle assembly). A baffle is nothing more than a flat object obstructing the flow of air out of a small nozzle by close proximity: The physical distance between the baffle and the nozzle…
-
Chapter 14 Pneumatic instrumentation
While electricity is commonly used as a medium for transferring energy across long distances, it is also used in instrumentation to transfer information. A simple 4-20 mA current “loop” uses direct current to represent a process measurement in percentage of span, such as in this example: The transmitter senses an applied fluid pressure from the process…
-
8.15 Op-Amp Data
Parametric data for all semiconductor op-amp models except the CA3130 comes from National Semiconductor’s online resources, available at this website: [*]. Data for the CA3130 comes from Harris Semiconductor’s CA3130/CA3130A datasheet (file number 817.4). Back to Main Index of Book
-
8.14 Operational Amplifier Models
While mention of operational amplifiers typically provokes visions of semiconductor devices built as integrated circuits on a miniature silicon chip, the first op-amps were actually vacuum tube circuits. The first commercial, general purpose operational amplifier was manufactured by the George A. Philbrick Researches, Incorporated, in 1952. Designated the K2-W, it was built around two twin-triode…
-
8.13 Op-Amp Practical Considerations
Real operational amplifiers have some imperfections compared to an “ideal” model. A real device deviates from a perfect difference amplifier. One minus one may not be zero. It may have have an offset like an analog meter which is not zeroed. The inputs may draw current. The characteristics may drift with age and temperature. Gain…
-
8.12 Positive Feedback
As we’ve seen, negative feedback is an incredibly useful principle when applied to operational amplifiers. It is what allows us to create all these practical circuits, being able to precisely set gains, rates, and other significant parameters with just a few changes of resistor values. Negative feedback makes all these circuits stable and self-correcting. The…
-
8.11 Differentiator and Integrator Circuits
By introducing electrical reactance into the feedback loops of an op-amp circuit, we can cause the output to respond to changes in the input voltage over time. Drawing their names from their respective calculus functions, the integrator produces a voltage output proportional to the product (multiplication) of the input voltage and time; and the differentiator…
-
8.10 The Instrumentation Amplifier
What Is an Instrumentation Amplifier? An instrumentation amplifier allows an engineer to adjust the gain of an amplifier circuit without having to change more than one resistor value. Compare this to the differential amplifier, which we covered previously, which requires the adjustment of multiple resistor values. The so-called instrumentation amplifier builds on the last version…
-
8.9 Building a Differential Amplifier
Differential Op-Amp Circuits An op-amp with no feedback is already a differential amplifier, amplifying the voltage difference between the two inputs. However, its gain cannot be controlled, and it is generally too high to be of any practical use. So far, our application of negative feedback to op-amps has resulting in the practical loss of…
-
8.8 Averager and Summer Circuits
If we take three equal resistors and connect one end of each to a common point, then apply three input voltages (one to each of the resistors’ free ends), the voltage seen at the common point will be the mathematical average of the three. This circuit is really nothing more than a practical application of…